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The paper examines the propagation of a plane free jet of incom-
pressible liquid with variable conductivity in a transverse magnetic
field at Reyy < 1.

In [1] the author examined the problem of propaga-
tion of a plane laminar jet—a source of incompres-
sible conducting liquid in a nonuniform magnetic field.
A self-similar solution was obtained for the case of
constant conductivity of the medium, The present
paper examines the same problem for a free jet allow-
ing for variation of conductivity with temperature,
under the simplest assumed dependence ¢ = ¢ (T),

We consider a plane jet of conducting liquid dis-
charging from a slit, the liguid having the same physi-
cal properties as the surrounding medium., We shall
examine the case when the jet has considerable en-
thalpy, its temperature exceeding that of the surround-
ing medium: T, > T.. We shall assume that the jet
propagates in a transverse magnetic field oriented
along the y axis (Hy = Hyx ) with Rep, << 1.

We shall further assume that the dependence of
conductivity on temperature is expressed by the
power law

o/oy = (T/To)™. @

The initial system of equations
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u=0 when y= 4+
under the power-law self-similarify transformations

u =umF’((P)v T = Tme)(q))v Upy = ax®,

Tn=38xV, ¢o=0bify (5)

transforms to a system of ordinary differential equa-
tions

F” 4 (3—2R) [(a 4 1 + 2k) FF — 24 F’2 1=NO"F, (6)

@' +(3—2k)Pri(a + 1 +20)FO —2yF O] =0, (7)
with boundary conditions

F=0, FF=1, F'=0, 8=1, 6'=0 when ¢ =0,

F'r=0, ©=0 when ¢ = & «. (8)

It was assumed in (6) and (7) that
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(k= 0 applies to a plane jet, and k = 1 to a fan-shaped
jet).

There is no term accounting for joule dissipation
in the seli-similar energy equation (7), because the
last term on the right in the initial equation (3), as
will be seen below, decreases with distance from the
jet origin more quickly than the other terms.

By integrating (6) and (7) across the jet, we obtain
formulas for the dependence of the self-similarity
constants «, 8, and y on the magnetic interaction
parameter N,
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From the expressions for the momentum (J/, =
™~ dod- 14-2k ES
= [putddy ~x * ) and flow rate (G = {pur'dy ~
o e
12k
o

~x ° ), bearing in mind that the latter may only

increase along the jet axis, while the momentum is
conserved in the ordinary discharge (N = 0), we find
that the value of « for which the solution has physi-
cal meaning lies in the range -1 - 2k < o = -1/3 —

— 2k/3. In order to determine the dependence o =

=« (N), as is seen from the expressions obtained
(10), we need to solve (6) and (7). In a numerical
solution we can ensure agreement of the solution with
relations (10) by choosing a value of o (and it turns
out to be unique) for which boundary conditions (8) are
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satisfied, with given values of the parameters m, Pr,
and N. The results of integration on a EMU-type com-
puter are presented in Figs. 1 and 2.
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Fig. 1. Dependence of self-similarity
constant o on the magnetic inter-
‘action parameter N for m = 1 (solid
lines); 2 (dotted lines); 3 (dot-dash
lines): 1) at Pr=0.1; 2) 0.5; 3) 1;

' 4) 2; 5) at 0 = const.

We shall briefly discuss the influence of each of the
individual parameters, Increase of the magnetic in-
teraction parameter, as may be seen from Fig. 1,
leads to a more rapid drop in velocity (and in mo-
mentum) along the jet axis (the value of o increases;
we recall that in the relation uy, = ex®, the constant
« < 0}, The dynamic thermal thicknesses of the jet
then increase.

With increase of Pr number, the thickness of the
thermal layer decreases (Fig. 2b), and the decel-~
erating influence of the magnetic field is concentrated
close to the jet axis, Therefore, for fixed values of
parameters m and N there is less attenuation of the
jet. .
For Pr « 0.1 and not overly large values of m, the
relation between the values of @ and N is nearly lin-
ear (Fig. 1), and is approximately determined by the
relation, obtained for constant conductivity of the
medium [17,
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In this case the velocity profiles agree, within the
limits of accuracy of the machine calculations, with
the profiles for a purely hydrodynamic jet discharge
(F' (¢) = ch-%@). This is because the thermal layer
thickness, for small Pr numbers, exceeds the dy-
namic boundary layer thickness. Therefore interac-
tion of the conducting jet and the magnetic field occurs
mainly in a weakly varying temperature field, i.e.,
with negligible variation of conductivity across the

jet.

With increase of the parameter m in (1)—the de-
pendence ¢ = ¢ (T)—there is a more rapid variation
of conductivity across the jet, and the deceleration
is largely localized in the region near the axis. There-
fore as m increases, the effective thermal jet thick-~
ness (Fig. 2,c), as well as the value of o (Fig. 1),
decrease. The width of the dynamic layer (in dimen-
sionless coordinates) increases (Fig. 2,c).

The condition for nontrivial solution of the dynamic
problem in self-similar transformations (5) is the
integral quantity

[ u xtdy = S = const > 0,

—oo

11

which does not vary along the jet axis when 6 =

= (@ — 1 — 2k)/2«, Then variation of & in the range
1 < 6 = 2 corresponds to variation of ¢ in the range
~1-2k <o = ~1/3 ~2k/3. The quantity S is as-
sumed to be given, The invariant (11) is not unique

for the self-similar transformations (5). For ex-
a—1
framy

ample, the integral j(?—) ldy is also conserved
Y

along the jet axis, and may be used to determine con-
stants «a and b. It is evident, however, that choice
of different integral invariants leads only to different
method of defining an arbitrary longitudinal velocity
scale, and has no influence on its final magnitude.

Using the integral condition (11), in conjunction
with the relation a = 2 (3 — 2k) vb?, we find the con-
stants a and b:
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Fig. 2. Relative velocity (full lines) and temperature (dotted lines) profiles: a) withm =1
and Pr = 0.5: 1) with N =0, 2) 1,3) 2, 4) 3; b) with m = 1 and N = 2: 1) with Pr = 0.1; 2)
0.5, 3)1, 4)2;c)with N=2 and Pr = 0.5: 1) with m = 0, 2) 1, 3) 2, 4) 3.
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From the condition of conservation of excess en-
thalpy

Q= .g' 0 Cxt (T —To)dy =pC, ‘g' uTx*dy  (13)

—on e

we determine the constant g:

1) wn —1
gz_fQ—[\F'@d@] . (14)
a pC, ) i

In the special case examined below we succeeded
in integrating the system (6), (7). We shall assume
that the power-law relation, occurring in discharge
of a jet of liquid with constant conductivity, between
velocity and temperature profiles is conserved:

0 () = [I" ()" 15)

(this relation will be obtained below from the thermal
equation). Then (6) is rewritten in the form

F” 4 (3 —2k)[(a -+ 1 -+ 2) x

mn+4-1

X F "—2aF’2] = NF’ (16)

This equation is integrated in quadratures withm.n =
=0 (m = 0, the case of constant conductivity) and
m-n=1. Inthe latter case the solution will be the
function

F'(p)=ch 2V 1—-N/bg, 17)

where
a=—L<l+2k+—l‘Y—)' (18)
-3 3

From the thermal equation (17) we determine an
expression for dimensionless temperature profile

®(¢)=1ch Vm cpl—(3-2k)(rx+l+2k) Pr ==
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(B2 (at1420)

=[F' ()] : , (19)

satisfying assumption (15), under which (6) was inte-
grated, The condition m- n = 1 determines the rela-
tion between the quantities m, N, and Pr

Pr(3—2k)(a+ 1+ 2k)m=1.

The values of constants a, b, and g are determined
as before by (12) and (13).

We note, finally, that some of the properties of
self-similar flow of a jet of liquid of constant con-
ductivity are conserved in the problem examined.

This is related to the presence of a finite region where
there is variation of the self-similarity constants and
interaction between the basic parameters of the prob-
lem (momentum of the jet, excess enthalpy, and the
parameters defining the external magnetic field).

NOTATION

u, v—Ilongitudinal and transverse velocity components; X, y—
longitudinal and transverse coordinates; T —temperature; Hy—-mag-
netic field intensity; m—exponent in expression (1); ¢, b, and g—
constants; S—integral invariant (given); G, Jx, Q—mass flow rate,
momenturn flux, and excess enthalpy of jer; Hy, T,—characteristic
values of magnetic field intensity and temperature; Tm, Tn—values
of temperature on jet axis and in swrounding medium, respectively;
o, op—conductivity, and its characteristic value; v—kinemartic vis-~
cosity; p—density; u—permeability; k—numerical constant (k = 0, 1);
F'—dimensionless velocity in a cross section of the jet; ¢—reduced
coordinate; Reyy—magnetic Reynolds number; N—magnetic inter~
action parameter; ©®—dimensionless temperature.
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